Academic Innovation Task Force
Report to Dr. Sandra Jordan, Chancellor

Spring, 2013

Committee Members

<table>
<thead>
<tr>
<th>Jack Benjamin</th>
<th>Tim Lintner</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tara Beziat</td>
<td>Vicki Long</td>
</tr>
<tr>
<td>Natalia Bowdoin</td>
<td>Matthew Miller</td>
</tr>
<tr>
<td>Haley Burleson</td>
<td>Brian Parr</td>
</tr>
<tr>
<td>Rebecca Carr</td>
<td>Adam Port</td>
</tr>
<tr>
<td>Allen Dennis</td>
<td>Ernest Pringle</td>
</tr>
<tr>
<td>Karl Fornes</td>
<td>Laura Quaynor</td>
</tr>
<tr>
<td>Anne Fulcher</td>
<td>Gerard Rowe</td>
</tr>
<tr>
<td>Tomas Greizinginger</td>
<td>Windy Schweder</td>
</tr>
<tr>
<td>Mohammad Hailat</td>
<td>Kari D. Weaver</td>
</tr>
<tr>
<td>Briana Kinloch</td>
<td>Keri Weed</td>
</tr>
<tr>
<td>Chad Leverette</td>
<td></td>
</tr>
</tbody>
</table>

Learning Communities

Gerard Rowe and Tim Lintner

Introduction:

The concept of learning communities (LC), here defined as “a variety of curricular approaches that intentionally link two or more courses, often around an interdisciplinary theme or question and enroll a common cohort of students,” is not new (Smith & MacGregor, 2009, p. 120). In fact, learning communities, in various permutations, have been in existence since the Progressive Movement of the 1920’s. It
was not until the early 1980’s, in response to high attrition rates (particularly after the freshman year), that learning communities started to gain traction.

According to Lenning and Ebbers (1999), learning communities are conceptualized around four essential ideals or constructs:

- Learning communities consist of students co-enrolled in two or more courses (from different discipline fields) that are linked by a common theme.
- Learning communities promote in-class and out of class opportunities for community-building by featuring cooperative learning activities with a focus on the collective processing of information.
- Residential learning communities support the two-course linked theme model. Here, students live in close proximity to each other (typically in a dorm setting), thus strengthening the learning/living bond.
- Learning communities are designed to target individual groups of students (i.e. academically underprepared, honors students, international students).

Most learning communities incorporate active and collaborative learning opportunities that extend outside of the classroom. In other words, the learning community is not confined to the classroom itself. Essentially, LC’s are structured to help students make two important connections to their academic and social lives while at college. First, LC’s encourage students to connect ideas from different disciplines, offering inter-relational understandings and applications of knowledge (Klein, 2000; MacGregor, 1991). Second, LC’s facilitate an extended period of social interaction amongst students, creating shared bonds of experience and interest.

Learning Communities and a Liberal Arts Education:

How do learning communities support the mission of Liberal Arts institutions? In sum, a liberal arts education provides a range and depth of integrated academic and social growth opportunities aimed at enhancing the general, practical, and skills-based knowledge of students (Spear, 2003). Schools with a high liberal arts identity share some or all of these characteristics:

- Emphasis is on interdisciplinary learning demonstrated in identifiable curriculum structures that stress intellectual connections across disciplinary lines, supported by pedagogies that evoke high engagement among students and with faculty.
- A well-defined and shared institutional emphasis on pedagogy evokes active-learning strategies, such as learning communities, service-learning, interdisciplinary senior seminars, living-learning programs, team-teaching, and freshman interest groups.
- Faculty development/faculty reward system focus on pedagogy and cross-disciplinary conversations; and
The presence of learning communities in liberal arts colleges and universities indicate that the institution understands and practices the philosophical and practical tenets of a liberal arts education. Simply, learning communities allow liberal arts institutions to embed a liberal arts education into a structured, engaging, and supportive academic program (Spear, 2003).

The mission of the Association of American Colleges and Universities (AAC & U) is to enhance the experiences and outcomes of students enrolled in Liberal Arts institutions. To this end, the concept of learning communities has been designated by LEAP (Liberal Education and America’s Promise) as a High-Impact Educational Practice.

The key goals for learning communities are to encourage integration of learning across courses and to involve students with “big questions” that matter beyond the classroom. Students take two or more linked courses as a group and work closely with one another and with their professors. Many learning communities explore a common topic and/or common readings through the lens of different disciplines. Some deliberately link “liberal arts” with “professional courses”; others feature service learning. (http://www.aacu.org/leap/hip.cfm)

Task Force Charge:

This task force will explore issues related to improving the learning experience for our students. Examples of areas to explore could include, but are not limited to: use of technology in the learning process, course delivery methods, flexible and responsive scheduling methods, revamping summer school calendar, utilizing and expanding library and other resources related to teaching and learning, and promoting engaged pedagogies.

Learning Community Models:

- The most simple (and economic) LC model is to “link” two (or three) courses from different disciplines around a common theme. Examples of such themes and content linkages include:
 - “What is the American Character?” (English and History)
 - “Greening the Business World” (Economics and Environmental Science)
 - “CheMath” (Chemistry and Algebra) (Smith & MacGregor, 2009)

- Another approach is to create a LC composed of students taking multiple classes within a single discipline in order to reinforce common themes in a major’s coursework (Zrull, 2012).

- Linked courses are most commonly offered in the freshman year, as this is seen as a pivotal point in terms of student retention. Some LC programs provide linked courses throughout the collegiate experience.
• Student cohorts are typically limited to 15-18 students
• Linked courses may be exclusive to LC members, or the student cohort may be embedded in multiple, larger classes.
• Many LC’s have off-campus enrichment or extension opportunities whereby the classroom content is enhanced via the off-campus experience (e.g visiting a botanical garden or a museum).
• LC’s are typically taught by two faculty members in their respective disciplines, though faculty could easily consist of a librarian, IT professional, academic advisor, or other specialists.
• An alternative to the traditional LC is the “Virtual Learning Community” in which students and faculty interact online, eliminating the need for co-scheduling a cohort of students.

Empirically-Based Support for Learning Communities:

Below is an abbreviated list of benefits derived from learning communities:

• Students who have frequent contact with faculty members – both inside and outside of the classroom – are more satisfied with their educational experiences, are less likely to drop out, and believe they have “learned more” than their colleagues who have less faculty contact (Cross, 1998).
• Students directly involved in a LC persist in their education and learn more. They do better academically when compared to students not privy to the LC experience (Ratcliff and Associates, 1995).
• Students enrolled in an LC not only had higher levels of engagement, higher persistence rates, and greater academic gains than students not enrolled in an LC, they also had higher levels of social skills (Shapiro & Levine, 1999).
• Students who participate in LCs apply critical-thinking skills more frequently than non-LC students, and they are more likely to apply their knowledge to new settings (i.e., making the connection between classes on their own) (Brower, 2010).
• Student enrolled in a LC at a two-year college created their own supportive peer group that extended outside of the classroom, were more involved in both in-class and out of class activities, spent more times on academic activities, and assumed a higher level of responsibility over their own learning (Tinto & Russo, 1994).
• Participation in an LC has been shown to significantly increase first-year retention (up to 30%) and can improve graduation rates in traditionally underrepresented majors such as chemistry (Driscoll, 2010).

Below is a chart of High-Impact Educational Practices (Kuh, 2008) delineating a variety of student ratings. Please note student ratings pertinent to Learning Communities.

Relationships between Selected High-Impact Activities, Deep Learning, and Self-Reported Gains
Relationships between Selected High-Impact Activities and Clusters of Effective Educational Practices

<table>
<thead>
<tr>
<th></th>
<th>Level of Academic Challenge</th>
<th>Active and Collaborative Learning</th>
<th>Student-Faculty Interaction</th>
<th>Supportive Campus Environment</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Year</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Learning Communities</td>
<td>++</td>
<td>+++</td>
<td>+++</td>
<td>++</td>
</tr>
<tr>
<td>Service Learning</td>
<td>++</td>
<td>+++</td>
<td>+++</td>
<td>++</td>
</tr>
<tr>
<td>Senior</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Study Abroad</td>
<td>++</td>
<td>++</td>
<td>++</td>
<td>+</td>
</tr>
<tr>
<td>Student-Faculty Research</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
<td>++</td>
</tr>
<tr>
<td>Service Learning</td>
<td>++</td>
<td>+++</td>
<td>+++</td>
<td>++</td>
</tr>
<tr>
<td>Senior Culminating Experience</td>
<td>++</td>
<td>++</td>
<td>+++</td>
<td>++</td>
</tr>
</tbody>
</table>

As evidenced in the tables above, first year students indicated, in particular, that learning communities supported high levels of deep learning, active and collaborative learning, and student-faculty interaction. These indicators may be particularly important in terms of student retention after the first year of study.

Financial Impact:

There is no organizational and/or structural financial impact (i.e. faculty load or release time) associated with the establishment and facilitation of Learning Communities. Though we do recommend that seed money (most likely in the form of a stipend) be awarded to LC faculty so as to collaboratively cull resources and plan course structure.
Learning Communities can, in fact, reap positive institutional rewards by increasing retention rates.

References

Brower, A. M., & Inkelas, K. K. (2010, Spring) Living-Learning Programs: One High-Impact Educational Practice We Now Know a Lot About. Liberal Education. 96(2).

Center for Excellence in Teaching

Members: Kari D. Weaver, Chad Leverette, and Brian Parr

Relevant Factors

Bain (2004) defines excellent teachers as individuals achieving “…remarkable success in helping their students learn in ways that made a sustained, substantial, and positive influence on how those students think, act, and feel” (p. 5). Weimer (2006)
provides a call to action for academic leaders looking to impact the culture of instruction at their institution by stating, “we have many faculty not trained to teach who learn to teach and continue to teach without ever going beyond insights derived from individual experience” (p. 195). One of the solutions outlined by Arum and Roksa (2011) to improve learning on college campuses is to improve curriculum and instruction, especially for coursework completed in the first two years of the student’s academic career. Furthermore, Brookfield (1995) believes quality teaching requires a “critically reflective practice” that encourages constant and continuous development through personal examination and feedback from peers, students and pedagogical literature to challenge our ingrained assumptions and provide a framework for growth (pp. 28-30). Finally, Weimer (2002) highlights the changing role of the teacher from delivering content to promoting learning by asserting, “They [faculty] will lecture less and be much more around the classroom than in front of it” (p. 14).

In light of the change in higher education from teacher-centered to learner-centered and to support reflective practice, most institutions have developed comprehensive centers of excellence in teaching and learning. Such centers serve many functions, from developing the scholarship of teaching and learning (Kreber, 2002; Weimer, 2006; Ginsberg & Bernstein, 2011; Turner & Gosling, 2012), supporting intercultural teaching (Gopal, 2011), developing critical thinking in the curriculum (Nicholas & Rader-Roth, 2011), instructional technology integration (Johnson, Wisniewski, Kuhlemeyer, Isaacs, & Krzykowski, 2012), and establishing core competencies for teaching faculty (Ball & Forzani, 2011). This proposal sets forth a series of steps to help re-envision the Center for Teaching Excellence in the current format at the University of South Carolina Aiken (USCA) to a comprehensive Center for Teaching Excellence (CTE) that addresses the need of a teaching institution like USCA to broadly address student learning through training and reflective practice.

In addition to the literature examined as listed on the References page, ideas from the websites of Centers for Excellence in Teaching and Learning at a number of peer institutions and aspirational institutions were used in the development of this report. A list of peer and aspirational institutions is available from the Office of Institutional Effectiveness.

Recommendations

Our recommendation is that USCA develop an active Center for Teaching Excellence that will provide training and resources to promote innovation in teaching including instructional technology and pedagogy. The development of a functioning CTE should include the following steps:
Re-establish the CTE advisory board. Representation should include members from following schools, departments, and offices: SOE, SON, SOBA, Sciences, H&SS, Library, Instructional Services, and the CTE Director. While the committee can be an appointed ad-hoc committee for the first 1-3 years, this committee should ultimately be established as a faculty assembly committee. The slots on this committee will be fixed to ensure representation of the various academic units across campus.

For AY 2013-2014, the EVCAA and AVCAA are currently working to re-establish an ad-hoc CTE advisory board with this existing structure. The purposes of the advisory board would be to:

- Determine what faculty are looking for the CTE to do, including training and support for instructional technology and pedagogy.
- Plan and organize (or at least come up with ideas for) CTE programming (workshops, demonstrations, etc.)
- Solicit faculty input through surveys and focus groups to insure that the CTE programming needs the needs of faculty and staff.
- Consider re-branding the Center for Teaching Excellence the Center for Excellence in Teaching and Learning to reflect best practices and highlight the focus on development of the learner through quality teaching. This should be discussed by the committee in light of results from the overall survey of peer institutions.

The CTE should have an annual budget. This budget could be used to provide the following:

- A “baseline” level of technology in classrooms to encourage and facilitate the use of instructional technology by all faculty in all classrooms.
- Funding for faculty travel to training and conferences. For example, a “Call for Proposals,” similar to the HAS travel award, could be sent out requesting that faculty provide a justification for travel to academic, teaching-focused conferences. The CTE advisory board could select the recipients of this competitive, teaching-focused, travel award.
- Grants or other support (course releases) for faculty who wish to explore new ways to teach using innovative technology or techniques. This could include something similar to the Critical Inquiry summer workshop model.

CTE should play a role in training tutors through the Academic Success Center to
expand teaching excellence to peer-to-peer teaching.

- The CTE Director could possibly have a teaching load that includes the training of these tutors in teaching practices.

Look at what other schools do and incorporate good ideas that would work at USCA.

- The EVCAA and AVCAA have already prepared a survey to send to 30 peer-institutions to obtain data on the structure and resources provided by centers for teaching excellence at other institutions from around the state and region. This is in progress with results to be compiled prior to the end of the 2012-2013 AY.

Have professional development “themes” so a faculty member could take a year and attend workshops and other training to develop an area such as technology, CI, WI, team teaching, interdisciplinary teaching, online teaching, etc.

- In addition, it would be most helpful if the CTE established a “theme” for new faculty. This “theme” would cover everything from the organization of USC Aiken and its personnel to tips on balancing teaching, scholarship, and service. It would be a theme that should be co-sponsored by the New Faculty Orientation Committee. New faculty would participate in this theme for each year of their first three years on campus. The goal would be to provide support, information, and networking opportunities for these new faculty through the first three years of the faculty appointment. In line with this initiative, the CTE Director should be appointed as a permanent ad hoc member of the New Faculty Orientation Committee.

The idea of a “CTE Fellows” program was discussed in which faculty members could receive funding (course release, stipends, etc.) to participate in a year of more intensive training. At the end of that year, those faculty could serve as mentors for the next group of fellows.

- As the CTE Fellows program grows, the CTE should implement funded faculty learning communities led by fellows. These should be small groups of 5-8 faculty members who are working toward academic innovation in teaching and learning. Examples of possible topics are: Publishing Scholarship of Teaching and Learning, Digital Humanities, Experiential Learning, Effective Teaching in General Education, etc. Members of Faculty Learning Communities should receive a professional development/travel
stipend of $500 with an additional $500 allocated to the group as a whole to purchase materials. There should be 2-3 faculty learning communities each semester at a total maximum cost of $27,000 annually. This should be implemented by the CTE through a competitive application process where Faculty Learning Communities are selected by the CTE Advisory Board.

The development of a functioning Center for Teaching Excellence would address the following Forward Together themes:

Be More Responsive to a Broader Range of Students. By providing training and resources, the CETL will allow faculty to accommodate individual differences in student needs including different learning styles and students with disabilities.

Expand Reputation and Awareness of USCA. By supporting faculty travel to attend and present at conferences and participate in workshops the CETL will increase the visibility of USCA in general and specifically related to teaching and learning.

Enhance Organizational Efficiency and Innovation. By incorporating advanced educational techniques and strategies including instructional technology, the CETL would promote and highlight innovation in the area USCA is most known for—teaching.

Financial

The total budget for the CTE should include funding for the director, technology and special programs including the CTE Fellows program and faculty learning communities as described below. The cost for a CTE director for salary and benefits is anticipated to be a total cost of $80,000, with a salary range of $59,000-$62,000. This would be lower if the director were hired at the assistant professor level. The funding for other initiatives should be as follows:

- $7500 annual funding for the CTE Fellows Program with five competitive fellowships annually awarded a stipend of $1500/faculty member
- $27,000 annual funding for the CTE Faculty Learning Communities with 2-3 faculty learning communities each semester with 5-8 faculty members each awarded a $500 stipend with each learning community awarded an additional $500 for materials
- $5000 annual funding for purchasing new teaching technologies
• $15,000 annual funding to support faculty travel to teaching and learning conferences.

The taskforce proposes that a portion of revenue generated from summer courses is used to fund CTE initiatives. Given that this funding stream is not consistent, the money available for CTE Fellows awards and CTE Faculty Learning Communities could be adjusted annually to fit available funds. The development office, or other campus entity as appropriate, should investigate establishing a partnership fund to provide monetary support for faculty travel to teaching and learning conferences.

The total proposed annual CTE budget should be $134,500, including the director’s salary and benefits.

Employee and Organizational Capacity

The CTE would benefit greatly by having a full-time faculty director and staff, perhaps similar to the CSD help desk model. As an administrative assistant has been recently added to help staff the CTE, but a full-time dedicated director is still needed.

Programs, Policies and Procedures

The bulk of this information is found in the steps to accomplish the overarching recommendation found in part III.a above.

Student and Stakeholders

A fully functioning CTE with a dedicated director will allow the institution to better focus on what it should do best, teaching. By staffing and funding the CTE, faculty should be able to more fully address the needs of different student learning preferences, new faculty will be better prepared by the institution to handle teaching responsibilities, and experienced faculty will be supported when working to reinvent themselves as teachers of new content or in new formats. If the University of South Carolina Aiken is to focus on teaching, there must be support and innovation led by a fully funded and functional CTE.

References

Center for Teaching Excellence Provide Workshops and Training on Evidence-Based Teaching (EBT) Practices

Tara Beziat

The newest teaching craze in higher education is “The Flipped Classroom.” Though there is initial evidence to support implementing this method, there are numerous other methods which are supported by years of research in different disciplines. Despite considerable research that promotes evidence-based teaching (EBT) in college classrooms and external grant money to encourage professors to explore these options, many continue to use a lecture base format. Brownwell and Tanner (2012) note that even trained scientists, who are taught to evaluate evidence and make changes accordingly, are resistant to changing their classroom practices, despite the evidence. Some of the barriers
to making the change from a well-oiled format, like lecturing, to a more interactive and student involved format are well documented. These barriers include additional time to make the changes, an incentive to become a better teacher and a lack of accessible and adequate training (Henderson, Beach & Finkelstein, 2011).

Currently, our Center for Teaching Excellence provides some workshops that address basic teaching issues. However, there is a need for those that primarily focus on evidence-based practices and how to implement them in the classroom. The following are examples of EBT methods that could be implemented immediately with minimal training (Dunn, Saville, Baker & Marek, 2013):

- Repeated Retrieval of Information - The Testing Effect (for a review see Roediger & Butler, 2011)
- Spaced Learning (for an example see Luckie, Aubry, Marengo, Rivkin, Foos, & Maleszwecki, 2012)
- Developing Metacognitive Strategies (for examples see Issacson & Fujita, 2006)

New Directions for Teaching and Learning devoted their Winter 2011 issue to make faculty more aware of EBT, in hopes they would seek to change or improve their current practices and therefore enhance student learning (Groccia & Buskist, 2011). At this time, there is not a superior evidenced-based teaching methodology, but all of these methods provide an active learning environment with measurable and favorable student outcomes. Because many of these methods are time and labor intensive, it is essential to provide incentive and support for the professors. Below are a few of the methods reviewed in this issue:

- Interteaching (for a review see Saville, Zinn, Neef, Van Norman, & Ferreri, 2006)
- Just in Time Teaching (for an example see Formica, Easley & Spraker, 2010)
- Team-Based Learning (for an example see Luckie et al., 2012)
- Problem- Based Learning (for a review in nursing education see Oja, 2011).

One way to be more responsive to a broader range of students is to use research-based pedagogical practices. These methods support the learning in a variety of different subjects as well as with a variety of students. Additionally, these methods reinforce and build upon sound educational practices (Chickering & Gamson, 1997) and principles of learning (Ambrose, Bridges, DiPietro, Lovett, & Norman, 2010). The linchpin to engaging students in our classrooms is providing training and support to their professors so they can explore and implement EBT.

References

Establishing an Evening/Weekend Program of Study
Keri Weed, Jack Benjamin, and Windy Schweder

Recommendation
To establish an evening/weekend program of study at USC Aiken that would provide students the opportunity to supplement their regularly scheduled classes with courses provided after work in the evenings and on Saturday. Targeted programs of study would also be offered that could be completed entirely with an evening/weekend format. In addition, options for selected courses to run in an accelerated format lasting from 4 to 8 weeks would be created during regular hours and during the evening/weekend schedule.
Relevant Factors

In 2003 Wlodkowski wrote that, “accelerated learning programs are one of the fastest growing transformations in higher education” (p. 5). Although accelerated programs imply that students may earn the same amount of university credit with less instructional contact hours, in practice the concept of accelerated learning has extended to a variety of flexible scheduling options including interim sessions, intensive short courses, modular systems and weekend courses (Tatum, 2010). These flexible scheduling options may be provided in a format that reduces the traditional number of contact hours, in which case they are referred to as Intensive Learning or in a compressed, or accelerated, format that reduces the length of the course but maintains the traditional number of contact hours (Serdyukov, 2008). Our recommendations encompass a variety of scheduling options that fall under the accelerated format providing students the opportunity to earn credits in a shorter length of time while maintaining the traditional number of contact hours. Although Intensive Learning options have considerable merit, successful implementation would require revamping teaching methodology and limiting the number of students per class (Serdyukov, 2008), and therefore are not considered further at this time.

Adult undergraduate students (24 years of age or older) made up 43 percent of the enrollment in U.S. postsecondary educational institutions in the 1999–2000 academic year (Horn, Peter, & Rooney, 2002). Many of these adult students live independently, have families, and work over 30 hours a week to make ends meet. Attending classes during the day is not an option for many (Denham, 2007). However, adults who lack college degrees are at a disadvantage for career success and advancement. Universities, including USC Aiken, need to become more accessible these adult learners and veterans who desire to either complete a degree, change a career focus, or begin a college education for the first time.

Traditional scheduling options currently provided at USC Aiken favor students just out of high school who work part-time in the evenings and on week-ends. USCA offers a limited selection of evening courses, defined as those beginning at 4:30 or later (from Spring 2013, Course Listings, Undergraduate Evening Courses). The Department of Education leads the way for evening options with over 10 courses offered for undergraduates, whereas the Department of Business has few, and the Department of Nursing none. A number of options (n = 8) are also available from the Department of Math/Computer Science. Many other departments offer at least one course in the evening. Students desiring to take evening classes during Spring 2013 would have been challenged to identify these courses as several with the ‘300’ section designation, signifying an evening course, were not included in the “Undergraduate Evening Courses” listing and several that were listed with a ‘300’ section designation, began as early as 11 am (i.e., ABUS A225, Sect. 300). These inconsistencies also made it difficult to get a valid count of current evening offerings.

In contrast to haphazard offerings provided by USC Aiken, many state universities provide a focused evening/weekend program of courses. For example, Boise State University provides a program called “After Work” that allows students to earn degrees in accounting, business, communication, criminal justice, health sciences, information technology, and applied science, all in the evenings and on weekends (www.boisestate.edu/afterwork). The University of Houston calls their program, Weekend U (weekend.uh.edu), with classes offered
on Saturdays. North Carolina Central University also offers a distinctive evening and weekend degree program (www.nccu.edu/academics/special/eveningweekend). Their mission statement is:

The mission of the Evening & Weekend Degree Program is to promote the mission of North Carolina Central University by providing an intellectual campus environment during the evening and weekends where working adults may pursue an undergraduate, graduate, or professional degree, certification, or complete individual courses that will enhance their skills and knowledge as part of a lifelong learning process (www.nccu.edu/academics/special/eveningweekend).

These are only three examples of the hundreds of public comprehensive universities that have implemented accelerated programs to meet the needs of adult learners and veterans who desire a liberal arts education and who prefer traditional learning environments (as opposed to totally on-line courses). The failure of public universities to establish these programs leaves nontraditional students few options but to turn to for-profit institutions that cater to their needs for flexible scheduling.

Benchmarking

Evidence for effectiveness of accelerated educational was reviewed by Tatum (2010) who summarized research that compared learning processes and outcomes between traditional and accelerated programs. Tatum concluded that few differences have been found in students’ ability to remember course knowledge, to transfer their knowledge, or to gain new insights from their learning. Students’ perceptions clearly favored the accelerated formats. However, the number and quality of comparative studies are limited, and even fewer have studied long-term learning outcomes. Studies have tried to control for ‘selection’ effect that may motivate some students to enroll in the accelerated programs over traditional courses, and have reported few learning differences with an accelerated format. In addition to the review by Tatum, Anastasi (2007) compared accelerated courses to traditional courses on students’ grades and perceptions of course rigor. Few differences were found based on format.

Forward Together Themes

Establishment of an evening/weekend program of study at USC Aiken would impact several of the Forward Together Themes, including (1) Grow the University, (2) Be more response to a broader range of students, (3) Expand reputation and awareness of USCA, and (4) Expand and enhance community relations/partnerships. Eventually we expect the program to have a positive impact on the budget and funding, but this may take several years to establish. Each of these areas is briefly discussed below.

Grow the University. Since the number of students graduating from high school has been decreasing with slower U.S. population growth, “future growth must be based upon increasing transfer students and retaining more of our currently enrolled students” (Jordan: Forward Together). Providing evening or weekend classes eliminates an important barrier to staying in school by allowing
students to work during the day. Students of any age, who have anxiety about returning to school, may enroll in an accelerated Saturday class to ‘get their feet wet’ and build confidence. Success in this limited endeavor may provide the motivation to complete a degree or embark on a new degree program.

Be more responsive to a broader range of students. Characteristics of a typical college student have become increasingly diverse in terms of age, ethnicity, and employment status. As more and more students are working to support families, opportunities for accelerated programs become imperative.

Expand reputation and awareness of USCA. A dedicated evening/weekend program with a catchy name (e.g., Weekend U, After Hours) has the potential to become a ‘signature program’ that is acknowledged throughout the CSRA and beyond.

Expand and enhance community relations/partnerships. Local businesses, K-12 institutions, and other employers have needs for educated employees. Partnerships that allow current employees to return to school without disrupting their employment status should benefit all.

We do not expect that the establishment of an evening/weekend program would impact the development of new degree programs. However, the evening/weekend format would be a good fit for a new MED program. We also expect little impact on faculty or staff salaries, or on the organizational efficiency and innovation.

The impact on the Current Budget/Funding Situation is uncertain. USCA has become increasingly dependent on tuition for funding. Improving the budget is therefore dependent on maintaining or increasing student enrollment. Establishing programs accessible to working professionals serves to both increase student enrollments and provides the opportunity for employers of these students to supplement their tuition, either directly or through the creation of scholarships. The financial impact is discussed more in the next section.

Financial Impact
The establishment of an evening/weekend program of study at USC Aiken would result in additional revenue due to tuition from increased enrollments. For example, if the evening/weekend program served 100 new students who enrolled for an average of 6 credit hours each, an additional $228,000 would be generated (100 * 6 * $380 per credit hour). Of course, a number of current full-time USCA students would also enroll in these courses, without resulting in new income since full-time tuition would cover this enrollment as well.

Additional costs would be incurred from provision of support services to evening/weekend students. Specifically, the book store would need to be open for limited hours on Saturday, computer services would need to be staffed, and the academic success center would need to be available; advisors would also need to be available in off hours. In
addition, heating and air conditioning services would need to remain on in buildings offering Saturday classes. Costs for these support services may be kept to a minimum by providing flexible scheduling for staff. For example, staff who worked Saturday morning may be granted Wednesday afternoons off. Costs would also be minimized by filling positions with undergraduate workers, perhaps through internal internships (e.g., for computer services, academic support). In addition, several buildings already remain open on weekends (e.g., B&E, SAC, Etheredge Center). Locating weekend/ Evening classes in these buildings reduces the extra overhead required to heat or air condition all buildings. Allocation of 25% of tuition for overhead results in an estimated net profit of $171,000 per semester. The estimated $57,000 allocated to overhead ($228,000 * .25) would cover the cost of providing heating and air conditioning at a per day cost of $2,400 (Jara) for a 15-week semester cost of $36,000. It is important to realize that this profit may not be realized the first year or two following implementation.

Employee and Organizational Capacity

Establishment of a dedicated evening/weekend program would require few additional resources. A part-time staff coordinator would be required to organize and promote the program. Saturday staffing could be handled through adjusting the schedules of current employees and hiring two or three additional student interns.

Faculty scheduling may be a challenge, as some faculty may be reluctant to commit to evening and Saturday teaching. Other faculty, however, may welcome the opportunity to trade Saturday teaching for a Tues/Thur class schedule, providing time during the week to devote to scholarship activities.

Programs, Policies and Procedures

Our recommendation to establish a dedicated evening/weekend program of study at USC Aiken includes several strategies, outlined below.

- Designate a part-time coordinator who would be responsible for organizing the program, responding to student queries, maintaining print and on-line information, monitoring success, and promoting the program in the community.

- Encourage the development of evening and Saturday classes among departments throughout the campus. Provide faculty incentives with release time during the week in exchange for Saturday teaching.

- Saturday classes would have the option to be offered in a conventional or accelerated format. For example, a conventional format would run the length of a typical semester, with classes meeting 3 hours each Saturday. An accelerated format would run for 7 or 8 weeks with students spending 6 hours each Saturday in class. Either format would allow students to attend Saturdays only and earn 6 hours of college credit during the semester. We are not recommending one option over the other, but suggest that both conventional and accelerated classes are offered.
• Work with targeted schools/departments to develop degree programs that could be earned by attendance only in the evenings and weekends. A MAT program within the School of Education, and degrees in math/computer science may be a good place to start since they currently provide many evening options. Degrees within the School of Business would also be a good fit for an evening/weekend format.

• Although somewhat tangential to evening/weekend courses, but consistent with accelerated learning programs more generally, we also recommend the development of compressed courses during daytime hours (early morning, lunchtime, or late afternoon may also be attractive options for working professionals). These compressed courses would include the same number of contact hours as current courses, but would meet longer than the 50 or 75 minute time slots to allow completion in a shorter time period. For example, an evaluation of three psychology courses taught sequentially in 4-week modules found no difference in student learning outcomes from these same 3 courses taught simultaneously in a 12-week period. However, student liked the short 4-week courses better (Anastasi, 2007).

Student and Stakeholders

Students would be the primary stakeholders with the establishment of an evening/weekend program. Anticipated impact would be increased student satisfaction with the learning options. Evaluation studies have found few differences in actual learning between conventional and accelerated formats, so we would expect high quality learning outcomes to be achieved. As more local and regional students have greater access to high quality options to complete their education, we also anticipate positive impacts to local businesses, K-12 institutions, and other employers.

An additional consideration pertinent to implementation of an evening/weekend program at USCA is how the addition of a significant number of part-time students would impact criteria used to evaluate institutional effectiveness. Despite an accelerated format, part-time students should not be expected to graduate in a 4-year period, thus negatively impacting graduation rates.

Summary

We strongly recommend that USCA establish an evening/Saturday program of courses to supplement regular scheduling, and to integrate several accelerated options (6 to 8 week classes) during the traditional semester. We believe that the provision of more flexible scheduling options will attract a diversity of students from the local and regional area that are currently prohibited from attending USCA due to work and family responsibilities. Evaluative studies have shown that accelerated program can be provided effectively in a way that facilitates learning and critical thinking skills, and is perceived positively by students. The costs may offset revenues in the first year or two of the
program, but continued growth should allow for profits to rapidly outpace costs in the near future.

References

Program Planning Summary

For New Program

Department of Mathematical Sciences, USCA

Program title: Master of Science in Mathematics/Computer Science

Tracks: a) Mathematical Sciences b) Computer Science

Designation of graduate program
This is a New Program Proposal for the degree of Master of Science in Mathematics/Computer Science at USCA. The degree will require a minimum of 30 credit hours, which may be obtained through one of the following:

- 30 credit hours of coursework, or
- 24 credit hours of coursework and 6 credit hours of M.S. thesis.

The program can be completed in a minimum of one full year.

Proposed date of implementation: Fall 2014

Delivery mode: Lectures and computer labs.

Need for the program in the state and the area

The combination of Mathematics and Computer Science is critical to the economic development of the state of South Carolina. The need for a combined program in Mathematics and Computer Science is driven by a number of factors. One important factor is the need of high quality people with strong backgrounds in both computer science and mathematics in the large Central Savanna River Area (CSRA). The economy of CSRA is growing steadily, and the rapid growth in industry and business depend heavily on software and computer use. In addition to the Savannah River Site of the Department of Energy that hires people with backgrounds in mathematics and computer science from nearby universities including USCA, many large scale industries, IT companies, and business companies in the area are developing rapidly and have a big demand for people that the proposed program would provide.

Another important factor is the need for professional development in mathematics for middle school and high school teachers in the local area. There are mathematics teachers who would benefit from a mathematics education at the graduate level. They can use the master’s degree for their future professional development. There are also mathematics teachers who want to get high-level training in mathematics to be qualified as a mathematics teacher. The proposed master’s program will provide a flexible combination of high level mathematics and computer science courses that would be an attractive option for these teachers.

In addition, the job market in computer science in the local area and the state is fast growing, especially jobs related to database, software engineering, website security, etc. The curriculum of the proposed master’s degree program is designed specifically to supply well-trained people for this job market.

Relation of the program to the existing programs at USCA
The program in Mathematics/Computer Science will be supported by highly qualified USCA faculty in Mathematical Sciences. A student with B.S. in Math/CS can naturally move into this program.

Assessment of extent to which the proposed program duplicates existing programs in the state

Mathematics and Computer Science are fundamental subjects, which are offered at liberal arts institutions. While there are programs in mathematics and those in computer science across the state of South Carolina, no South Carolina program is a combination of mathematics and computer science. The proposed program does not duplicate existing programs in the state.

Program demand and productivity that includes anticipated enrollment and annual completion.

Expectations for initial program enrollment are 10 new students each year. The new students could come from the existing B.S. Math/CS program at USCA, from in state undergraduates majoring in math or computer science, from out of state undergraduates in math or computer science, from existing high school teachers, or from industry.

Well-prepared students may complete the program in one full year; part-time students may need two or more years to finish the program. The anticipated completion is 5 or 6 graduates at the end of the first year, and 10 students at the end of the second year onwards.

Employment opportunities for graduates

This program prepares students for careers in industry that use one or more of the following areas: mobile computing, web design and security, computer graphic, image processing, software engineering, and algorithms. The program also prepares graduates for job opportunities in academics or government. There are many opportunities in CSRA for graduates from this program. SRS, Blue Cross and Blue Shields, Bridgestone and Firestone are potential employers. The program also provides students with the opportunities to pursue further studies such as doctoral studies. For teachers or other professionals, this program enhances their career advancement.

Curriculum

Course-Work Option:

Students must complete 30 credit hours of graduate courses from the following two lists with at least two from each list.

Thesis Option:
Students must complete 24 credit hours of graduate courses, at least two from each of the following two lists, and also complete 6 credit hours of thesis.

List 1:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 700</td>
<td>Applied Linear Algebra</td>
<td>3</td>
</tr>
<tr>
<td>MATH 701</td>
<td>Advanced Abstract Algebra</td>
<td>3</td>
</tr>
<tr>
<td>MATH 703</td>
<td>Real Analysis</td>
<td>3</td>
</tr>
<tr>
<td>MATH 705</td>
<td>Multivariable Calculus</td>
<td>3</td>
</tr>
<tr>
<td>MATH 710</td>
<td>Probability</td>
<td>3</td>
</tr>
<tr>
<td>MATH 711</td>
<td>Statistics</td>
<td>3</td>
</tr>
<tr>
<td>MATH 726</td>
<td>Differential Equation</td>
<td>3</td>
</tr>
<tr>
<td>MATH 728</td>
<td>Applied Mathematics</td>
<td>3</td>
</tr>
<tr>
<td>MATH 730</td>
<td>Topology</td>
<td>3</td>
</tr>
<tr>
<td>MATH 752</td>
<td>Complex Analysis</td>
<td>3</td>
</tr>
<tr>
<td>MATH 760</td>
<td>Numerical Analysis</td>
<td>3</td>
</tr>
<tr>
<td>MATH 788</td>
<td>Number Theory</td>
<td>3</td>
</tr>
</tbody>
</table>

List 2:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSCI 715</td>
<td>Network Security</td>
<td>3</td>
</tr>
<tr>
<td>CSCI 720</td>
<td>Database</td>
<td>3</td>
</tr>
<tr>
<td>CSCI 723</td>
<td>Data Mining</td>
<td>3</td>
</tr>
<tr>
<td>CSCI 740</td>
<td>Software Engineering</td>
<td>3</td>
</tr>
<tr>
<td>CSCI 750</td>
<td>Algorithms</td>
<td>3</td>
</tr>
<tr>
<td>CSCI 760</td>
<td>Mobile Computing</td>
<td>3</td>
</tr>
<tr>
<td>CSCI 763</td>
<td>Image Processing</td>
<td>3</td>
</tr>
<tr>
<td>CSCI 765</td>
<td>Computer Graphics</td>
<td>3</td>
</tr>
<tr>
<td>CSCI 776</td>
<td>Graph Theory</td>
<td>3</td>
</tr>
<tr>
<td>CSCI 778</td>
<td>Discrete Event Simulation</td>
<td>3</td>
</tr>
<tr>
<td>CSCI 783</td>
<td>Machine Learning</td>
<td>3</td>
</tr>
<tr>
<td>CSCI 785</td>
<td>User Interface Development</td>
<td>3</td>
</tr>
</tbody>
</table>

Estimates of Costs

The implementation of this program will require a new full-time faculty member in the Department of Mathematical Sciences with salary and fringe benefits of approximately $80,000 per year from Fall 2014. This faculty will provide expertise in teaching courses to be offered and supervise theses of graduate students. The program also needs an instructor in mathematics to teach service courses for general education so that current faculty will have more time towards graduate courses and thesis supervision. The estimated costs are $60,000 per year from Fall 2014, including fringe benefits. Other
costs are $10,000 for office space, furniture, and equipment/computers for the first year. We will seek external funding to support the implementation of this program, for example, writing a proposal for Mathematical Sciences Infrastructure Program or for Computer and Network Systems sponsored by NSF.

Collaborative Communication Center
Karl Fornes and Matt Miller

Remediation and Collaboration
USC Aiken's current academic support structure includes the Writing Room, the Math Lab, content-area tutoring, and supplemental instruction. Through workshops and one-on-one consultations, the Writing Room is responsible for helping students develop written communication skills, from AEGL 101 to writing-intensive classes to the Writing Proficiency Portfolio. USC Aiken does not currently have a specific program to assist
students with oral communication skills. The Writing Room hires upper-level students (mainly English majors) to work with students on written projects. To better understand the nature of that work, it is important to distinguish between remediation and collaboration.

Students who are struggling in classes that require writing, especially AEGL 101 and 102, are often advised to take advantage of the services the Writing Room provides. The struggling student, then, will arrive in the Writing Room with a draft of a written project. A Writing Room tutor will go over the draft with the student and note concerns. The student is then directed to resolve any issues and fix noted errors. Each consultation is limited to thirty minutes; consultations are often much shorter. The problem is that for collaboration to occur, all participants must recognize and embrace their roles as collaborators. Collaboration requires active participation from all parties. When a student is sent to the Writing Room by an instructor and the tutor then identifies errors for the student to fix, the student is a passive recipient responsible for little more than transporting the draft and fixing the errors.

- What we call collaboration in the Writing Room is actually remediation.

Furthermore, the underlying and unstated assumption behind this process is that struggling students need only to make a quick stop to the Writing Room and have an English major look over a draft and their writing will magically become better. At least, that is what is unwittingly communicated to the struggling students.

These students often have deep syntactic difficulties. The level of remediation required for AEGL 101, 102, and 201 students cannot be provided for by undergraduate students in a "one-stop" shop. The intervention must be purposeful, intensive and extensive. Most important, the intervention must be led by an academically-qualified professional with a post-graduate degree.

- Remediation is best handled by experienced professionals, not undergraduate students in a minimum wage, part-time position.

Students identified as needing remediation should be directed to a specific office to work with a professional tutor and create a semester-long program to supplement their coursework. Thus, students will still receive one-on-one tutoring, but this tutoring will be structured deliberately and handled professionally.

The Collaborative Communication Center

The area that is now the Writing Room can be devoted to a leading-edge, cross-disciplinary collaborative center for oral and written communication to prepare students for today’s visual and technological culture.

The center will provide support for students working in any academic discipline, but we expect it to be specifically in support of students working on drafts for upper-level
WI classes, presentations in communications and business classes, reports for labs in the natural sciences and business classes, and lesson plans for education and subject-area courses. We also think the resources available in the center will be specifically useful for students seeking the MBA for liberal arts.

Here is some of the support we envision:

- **Word Processing**--Of course, we assume that students understand the basics of word processing. That said, the center can provide direction on how to number pages, create a table of contents, embed charts, etc.

- **Presentation Software**--Students can receive feedback on their presentation materials--how to embed images, charts, etc. into PowerPoint slides, how to use Prezi, how to maximize the material at hand, etc.

- **Presentation Recording**--Using available technology, students can practice a presentation and have it recorded to review later.

- **Charts, Graphs, and Visuals**--Students can learn how to create charts and graphs and how to include them in reports for any course.

- **Smartboard Technologies**--Students can learn how to integrate technological mediums seamlessly and successfully for lesson plans and practicums.

Because many students have the technological knowledge already, the center can be staffed primarily by students. One hopes that the students/staff are those who have shown the ability to lead and excel in their major or professional program. Indeed, these students would be paraprofessionals, earning reputations across campus as experts, leaders, and innovators. With these special students, the center will be truly collaborative because it will rely on the sharing of knowledge.

For example, a student might need to create and embed a chart for a formal proposal in ABUS 345 Business Writing. The student can go to the center and discuss with the consultant the purpose and audience for the proposal. The consultant and student can then choose the best type of chart. The consultant can then show the student how to create that chart and embed it into the report. Thus, the student must share knowledge of purpose and audience and the consultant must share the technical know-how.

Similar Centers

Although not as ubiquitous as explicitly academic support centers (writing centers, math labs, etc.), centers similar to the one we are proposing are becoming increasingly popular as university’s find strategies to support students engaging with the communications technologies of the new millenium. Of course, each center will evolve within its institutional context; we envision the USC Aiken Collaborative Communication Center will grow to match the specific needs of our students.
Resources and Personnel

• Professional Writing Tutor
 By definition, the professional writing tutor position will require a salary. We have identified two options: 1.) create an entirely new position or 2.) restructure the Academic Success Center staff to accommodate the position. If we create an entirely new position, the cost will be salary commensurate with the position; the latter will result in a net of no additional resources. However, we recommend restructuring the Academic Success Center staff to accommodate the new position at no additional cost to the university.

• Collaborative Communication Center Student Staff
 The student staff can be compensated with the institutional student employment funds currently used to compensate the Writing Room students at no additional cost to the university. We suggest a small budget for training and professional development (sharing research at conferences, etc.). We hope that in the future these students can receive a wage (above the minimum) more in touch with other paraprofessionals at other campuses, especially considering the opportunity this center has to improve the educational experience of students at USCA.

• Director of the Collaborative Communication Center
 The Collaborative Communication Center will require a director on a twelve-month contract. We have identified two options: 1) create a new position or 2) provide current faculty reassigned to direct the center. If we provide 75% reassigned time to an existing faculty member, we can hire part-time faculty to teach the classes associated with the reassigned time at a cost of $6,000. However, we recommend creating a new position and hiring externally. Additional resources will be necessary to cover the new director’s salary.
Innovative Technology

Haley Burleson, Tomas Greizinger, and Vicki Long

Definition of Technology:
For purposes of this committee’s report, the following definition of technology has been adopted: Use of any form of digital or electronic device or programs for such devices—including but not limited to computers of any sort (PC, Mac, laptops, notebooks), tablets, smart phones, soft-ware, web-based programs, the cloud, ebooks, applications, etc.—that are used in the delivery of data and/or the expression of ideas.

Introduction:
The use of technologies—or LACK thereof—was an issue raised by students and faculty alike during the initial convening of this taskforce. This sub-committee is unique in that it contains more students than faculty members, and all members were very vocal on the technology issue from the onset. It is the premise of the sub-committee that the use of technologies in higher education is a double-edged sword. On one side boundless possibilities exist. On the other side, forces of implementation are cumbersome and slow, at odds with the rapid-fire solutions technology promises. Whether it is the growing number of students raised in the digital era (Pacansky-Brock, 2013), the complex relationship of technology to the economics of higher education (Bowen, 2012; King, 2013), the real distress of faculty concerned with the multitude of technology’s ramifications (Simmons, 2001) or those faculty not fully engaged in these new modalities (Tuttle, 2012), the reality is that technology will continue to be absorbed into collegiate-level learning and may truly alter the face of academic environments as we know them. A fuller recognition of the impact of technology on education and its integration into academic life is a challenge that USCA must meet.

Literature Review

The eGenerations:

The current generations of students enrolled in college today are miles ahead of most faculty when it comes to technological exposure. The generations of students-to-come are moving at even faster technological speeds. Pacansky-Brock (2013) cites the 2010 results of Project Tomorrow’s survey of 300,000 students enrolled in kindergarten through grade 12 which showed that “25% of students in kindergarten through second grade had a cellphone and 16% had a smartphone” (p.5).

Pool and Giraffa (2013) presenting at the recent 7th International Technology, Education and Development Conference held March 4-5, 2013 in Valencia, Spain, made the following observation on the mindset of young students raised in the digital era: “Young teenagers who have access to digital technologies, especially those associated with the internet, consider virtual environments, where they interact and search for information, to be elements of themselves” (p.1). This subcommittee contends that such virtual environments may be “Fantasyland” to faculty struggling with Black Board!

Bowen sums up what he call the “ubiquity of e-learning” (p.4) in his book Teaching Naked. As younger and younger children are in daily contact with digital media, even before they can comprehend the message, the medium becomes more familiar. Television and print news media stories from 2010 and 2011 herald the use of iPads by infants (Stark, 2011). E-Contact, if not e-learning, truly is ubiquitous for the new eGenerations.

Economic Concerns with Technology in Higher Education

It is an accepted fact that the cost of a college level education is escalating. Bowen (2012) makes the relevant point that the price of education does not equal the quality of education. Keeping up with technological changes has been one avenue that has been explored as being both cost-savings to learning institutions and attractive to
young students (Bowen, 2012; Simmons, 2001). However, technological devices themselves have been implicated in the cost of higher education from different vantage points. The following paragraphs will touch on some of those varied economic concerns anticipated to have an impact on USCA.

Initial economic concerns surround the programs and support staff necessary to service and instruct in use of various technologies. This is an ongoing issue. Running a 24/7 “Help” service is costly but necessary. Other economic concerns involve the very real cost of preparing faculty to feel competent and comfortable with new technologies (Pacansky-Brock, 2013; Tuttle, 2012). Beyond that, there is concern that administrations may not fully acknowledge the true cost of the time it takes a faculty member to redesign a course to include teaching innovations once they are mastered (Pacansky-Brock, 2013). This could perhaps be one of the larger costs associated with successful implementation of such innovations. Often faculty members are expected to update courses on their own time. Successfully including new technologies may not be an “update” but rather an entire “overhaul” of a course.

Some institutions have jumped into the technological revolution with both feet, lots of money and little data so far on their success. One reason for this lack of relevant data is that the programs are extremely new and data collection is currently underway (Pacansky-Brock, 2013). One example of such expensive programs would be the issuing of iPads to all students and faculty at Pepperdine. Ongoing research on the results can be followed at: http://community.pepperdine.edu/it/tools/ipad/research/default.htm . It remains to be seen if such measures will have the evidence to justify the cost, but they are exciting programs nonetheless. These innovative programs should be monitored.

In the book Teaching Naked, the author states that, “by fall of 2010, 31.3% of college students were taking a course where at least 80% of the material was delivered online.” (Bowen, p.11). Much of the data that exists of the financial success of technology in higher education focuses on the economic success of institutions which employ online courses, particularly asynchronous online courses (Simmons, 2001). Asynchronous online courses involve information that is pre-recorded, often by “premier” or “star” faculty and then graded electronically and managed by facilitators (Simmons, 2001). These courses, sometimes taught in a hybrid fashion to include some real-time student-teacher contact, are extremely cost-effective and have led to the financial success of such institutions as the University of Phoenix (Simmons, 2001).

The concept of low-cost MOOCs (massive open online courses) has just recently received endorsement by the American Council on Education (Anderson, 2013). MOOCs, which may be run by for-profit or not-for-profit companies, tend to be international in enrollment with students numbering at times in the thousands per course, taught by known experts and free or for minimal expense for the learner. According to Nick Anderson, Washington Post staff writer, many are starting to charge a nominal fee to issue certificates that may be accepted for course credit by accredited universities (Anderson, 2013). One of this subcommittee’s members enrolled in a MOOC on statistics “taught” by a professor from Cornell. The cost for Cornell’s online course taught by this
well-known textbook author was $4000.00. The MOOC-equivalent, taught through a for-profit education company by the same professor, was available for $300.00. It took two courses to equal the Cornell equivalent, but the total cost of $600.00 was significantly less. The certificates of completion were accepted for course credit at Catholic University on the recommendation of a professor of statistics from Johns Hopkins. The course had hundreds of enrollees, some from as far away as India and Singapore. Many higher education scholars remain skeptical, but it is hard to ignore the excitement that MOOCs generate in bringing education to the masses and the potential for low-cost college credits if the certificate acceptance becomes widespread (Anderson, 2013).

These issues and examples are just the “tip of the iceberg” when it comes to considering the financial impact of increasing technology on higher education. King (2013) in the lead article for Political Science and Politics’ Symposium entitled “The Troubled Future of America’s College and Universities” concluded that the four biggest economic threats to the basic existence of colleges and universities as we know them are the internet, distance learning, for-profit institutions and online start-ups. These four threats all have ties to the new technologies discussed here.

Faculty Concerns and Considerations

Many faculty members are at a disadvantage in terms of their personal association with technology. Some authors have compared mastering technology to mastering a foreign language (Williams, 2003), and certainly those who grow up bilingual have an acknowledged advantage. Growing up “techno-savvy” may be no different. Age alone puts many current faculty members behind in the technology revolution. According to a recent survey of over 4500 higher education faculty by the Babson Survey Research Group and Inside Higher Ed (Allen, Seaman, Lederman, Jaschik, 2012), over 70% of those responding had been teaching for 10 or more years, with over half of those teaching for more than 20 years. This landmark survey focused on faculty perspectives on likes and dislikes of digital use and compared the faculty perspective to administrators’ perspectives (Allen et. al., 2012). Discomfort with the medium, lack of time to feel competent with new technologies and lack of time to alter traditional courses to embrace new teaching modalities have all been named as serious faculty concerns (Bowen, 2012; Tuttle, 2012).

Faculty perspectives on the rush to “hi tech” options touch many issues pivotal to concerns of academic freedom (King, 2013; Simmons, 2001; Whittaker, 2010). Online learning options, particularly those asynchronous courses discussed earlier, bring up the issue of who owns the intellectual property. If the institution that funds the technology then posts and manages the course online, even if the faculty member is considered a “premier” draw to the course, if its administration and facilitation can be done by others, who “owns” it (Simmons, 2001)? Who owns it if the faculty member changes institutions or is deceased? If professors are turned into mere facilitators, are they worth as much (Brady, 2013; Pacansky-Brock, 2013; Simmons, 2001)? Can a facilitator achieve tenure? Will online publications have rigorous peer-review? In the Babson-HigherEd Survey, concerns of scholarly rigor influenced many respondents to shun seeking online-only
journal publication of their work (Allen et. al., 2012). These are but a few of the serious
concerns mentioned by faculty members nationwide that are potentially applicable to
USCA.

Task Force Sub-Committee Observations and Recommendations To-Date:

General Issues with pre-existing Technology on Campus

The subcommittee considered several issues with the state of technology at
USCA. Of note, two primary student concerns are (1) the lack of consistency among
faculty members as to the use of Black Board and (2) the lack of use of available
technologies such as Smart Boards. Taking Academic Freedom for the faculty into
account, students feel they should be able to have some minimum expectations as to the
use of Black Board and available technologies, such as the expectation that grades be
posted. We feel these are truly humble requests.

Some departments seem to use technologies better than others. Again, from the
students’ perspective, there should be some minimal expectations. Students feel if they
are expected to use Black Board, professors should know how to use it as well. Published
literature supports this (Pacansky-Brock, 2013).

In discussing some of these concerns with faculty, it was found that some faculty
members do not feel prepared or properly educated. This confirms previous studies
(Tuttle, 2012; Wilson, 2003). It was also discovered some faculty use varying
technologies unknown to other faculty members. For this reason, one of our primary
recommendations of this subcommittee is that a survey be taken to see what technologies
are currently being used by ALL faculty at USCA and what is needed to use those
technologies more effectively. A sample of survey questions is attached. It is proposed
that a school-wide survey of faculty be conducted. At some time in the future students
should be surveyed as well.

Recommendations from Sub-Committee:

- Refine and initiate survey of Faculty and Students (see attached)
- Consider use of student helpers assigned to Faculty to help with classroom
technology use. These could be paid student jobs.
- Carefully consider the recommendations below derived from benchmark work
published in the literature on Technology and Education. As this is a rapidly
changing field, special attention needs to be paid to studies that are evidence
based. Currently, it is acknowledged few such studies have been published.

Recommendations from the Current Literature Worthy of Consideration (These
ideas are not unique to one author but are echoed throughout the writings on this
subject. Therefore, individual citations are not included with each recommendation
but attributed to those that were truly unique).

- Administrators need to “walk the walk & talk the talk” if they want to
encourage technology growth on the USCA campus.
• Students need to know what is expected of them and their discomforts need to be taken into account. They have the right to expect that if “they engage in the use of a technology in a learning environment, they are led by an instructor who can explain why it is being used and how to use it” (Pacansky-Brock, p.147).

• Course evaluations need to be redesigned to take into account the teaching risks inherent in implementing new technologies. Faculty need to be supported through fair and robust teaching reviews so they do not shy away for fear of failure with new modalities (Bowen, 2012).

• Faculty need time to “think” about new teaching methods and need paid re-design time to adjust courses to changing technologies.

• USCA needs to fully adopt an evidence-based practice approach to the use of new technologies, providing opportunities to research the value of new methods and the courage to throw-out those that don’t work.

Survey

The following surveys serve only as a template and a preliminary suggestion for this process. There are many other areas and topics that can be explored and examined using these surveys. Splitting the survey process between the students and the faculty will provide answers from different points of view and will hopefully lead to an establishment of a university-wide system that could benefit both sides.

These surveys should be distributed to all students and faculty using online survey software, such as LimeSurvey. These surveys will help the administration understand the attitudes of the students and the faculty towards the use of various technological tools in the classrooms or class related environments. As we know, the use of Blackboards differs greatly in between the departments and these surveys could help the administration gain a better understanding of these trends. There are also many other technological tools that could be implemented and these surveys could provide the necessary feedback for further research of those technological tools.

Faculty

1. What is your title?
 a) Part-time Instructor
 b) Instructor
 c) Assistant Professor
 d) Associate Professor
 e) Professor
2. What department do you teach in?
 - List all departments
3. Do you think Blackboard is a useful software for professor use?
a) Yes
b) No – explain why
c) Other – specify

4. Do you currently use Blackboard or other education software (ie. Pearson MyLab) for the classes you teach?
 a) Yes – send to question #7
 b) No – send to question #5

5. Please specify the reasons why you do not use Blackboard (Select all that apply):
 a) Lack of user friendliness
 b) Technology issues
 c) Does not include needed features
 d) Does not serve the needed purpose
 e) Preference of non-computer records
 f) Other - specify

6. Would you be willing to use Blackboard or other software if there was more technical support present and available to you on campus?
 a) Yes
 b) No

7. If yes in #4, what do you mostly use it for?
 a) Everything class related (Exams, quizzes, assignments, grading, etc.)
 b) Just assignments and grading
 c) Posting grades only
 d) Occasional use

8. Specify exactly which software you use:
 a) Blackboard
 b) Pearson MyLab
 c) iClicker
 d) Other - specify

9. Do you think technological advancement can be useful and improve the educational environment in/out of the classrooms?
 a) Yes – explain why
 b) No – explain why

10. Would you like to see increased use of technology by students in the classrooms?
 a) Yes – explain why
 b) No – explain why

11. Please specify in few sentences what improvements would you like to see USCA in relation to use of technology in the classrooms (Blackboard, MyLab, iClicker, use of smart boards, laptops, tablets, etc.)
Students

1. What is your class standing?
 a) Freshman
 b) Sophomore
 c) Junior
 d) Senior

2. What is your major?
 - List all current majors

3. In which department did you take majority of your classes so far?
 - List all departments

4. Do your professors currently use Blackboard?
 a) Yes, all.
 b) Yes, few.
 c) Yes, one.
 d) No

5. If yes, what do they mostly use it for?
 a) Everything class related (Exams, quizzes, assignments, grading, etc.)
 b) Just assignments and grading
 c) Posting grades only
 d) Occasional use

6. Do you think Blackboard is a useful software for student use?
 a) Yes
 b) No – explain why
 c) Other – specify

7. If yes, what would you like to use Blackboard for?
 a) Everything class related (Exams, quizzes, assignments, grading, etc.)
 b) Just assignments and grading
 c) Posting grades only
 d) Occasional use

8. Would you like to at least have the grades from all your classes posted on
 Blackboard?
 a) Yes
 b) No

9. Would you like to see increased use of technology in the classrooms?
 a) Yes – explain why
 b) No – explain why

10. Please specify in few sentences what improvements would you like to see USCA
 in relation to use of technology in the classrooms (Blackboard, MyLab, use of
 smart boards, use of laptops, tablets, etc.)
References

Study America

Karl Fornes

Context

The University of South Carolina Aiken has an established Study Abroad program that includes regular study abroad opportunities. For example, the School of Business offers annual programs in the Czech Republic and France and the Department of Languages Literatures and Cultures offers regular programs in Spain.

Despite the financial aid opportunities available, many of these programs are prohibitively expensive for a number of USCA students. In fact, many potential study
abroad opportunities offered at USCA are eventually cancelled for a lack of student enrollment. After all, as an institution of higher learning, USCA is relatively inexpensive and attracts students who may not have the resources necessary for international travel.

Program

The proposed Study America program will offer a less expensive, though arguably equally rewarding, experience. Although students may not have the level of intercultural experience associated with studying abroad, students can have a culturally rich experience studying here in this country. After all, many of our students haven’t traveled outside of the South, many not more than a few hundred miles from Aiken. The proposed Study America program would show students a part of their own country that is vastly different, diverse, and culturally engaging.

I already plan to offer Study America: New York City in May 2014. Study America: New York City will include visits to museums, publishing houses, and significant historic and cultural sites in the New York City metropolitan area (see below). In addition to the obvious advantages of visiting specific culturally rich sites, students will experience the dynamics of “big city” life not available in the CSRA.

As the program develops, we would consider additional American Trips to other cities and other travels across America. These programs represent engaged learning adventures, the best there is in lasting education. Traveling to New York to experience the arts and the city, traveling across America--perhaps from one Presidential Library to the next--while exploring the majesty and magnificence of our country beyond our Southern boundaries, education doesn’t get much better nor more fulfilling. Here is a list of other possible Study America programs that might be possible and possible disciplines that might be implicated in such a program:

- Study America: Chicago (music, history, art history)
- Study America: Washington DC (political science, history) etc. As mentioned above, Study America: The West (geography, history)
- Study America: Folk Art of the South (art history)

Study America: New York

I include the following brief description of the May 2014 proposed Study America: New York as an example of what we might do in other contexts.

Academic Course (Maymester 2014)
ENGL 468 Studies on Writing: Travel Writing

Schedule
April 2014 two-hour orientation
May 12-17 New York City
May 19-27 In-Class Workshops
New York Sites (Tentative)

- The Metropolitan Museum of Art
- Central Park
- The Museum of Modern Art
- Ellis Island/Liberty Island
- Staten Island Ferry
- The Solomon R. Guggenheim Museum
- Penguin Publishing
- Open Road Media
- Times Square
- The Whitney Museum of American Art
- Random House Publishing
- The International Center of Photography
- Empire State Building
- The Brooklyn Museum
- Brooklyn Bridge
- Wall Street/Financial District
- The Aperture Foundation Gallery
- Chinatown
- Little Italy